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Abstract

Object detection is one of the oldest problems in computer vision which have eluded a ’grand unified

theory’ till date. Occlusion of objects is a major concern for many object detection algorithms, and

indeed all algorithms that output a simple bounding box. The first part of this thesis explores existing

research in segmentation-aware object detection, which depends on pixel level binary object/not-

object segmentation of the contents of the bounding box for detection. This incorporation of pixel-

level labelling provides an intuitive method of dealing with occlusion. The labelling is achieved by

performing maximum a-posteriori inference on a grid binary Markov Random Field (MRF) defined

over the bounding box. The second part of this thesis describes an effective approach for defining

pairwise terms in the MRF that encourages visual consistency and a strategy using this framework

for detecting pairs of objects - localizing them and labelling the contents of their bounding boxes

such that the ‘agreement’ between the two objects is maximized.
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Introduction

Object detection is one of the basic problems in computer vision and has been extensively researched.

Given a test image, every object detection algorithm outputs one or more detection hypotheses, and

associates a ‘score’ with each hypothesis. One can then threshold this score and get detections in the

image. The most popular form of representing a detection hypothesis is a bounding box, which is a

rectangular region enclosing the area in the image in which the detector thinks an object is present.

While a rectangular is the simplest way to indicate a region of the image, it is not optimal for many

applications. If the object itself is not rectangular, or if the object is partially occluded, not all

the pixels in the bounding box belong to the object. Many applications such as pose estimation,

scene understanding and augmented reality require a pixel- or small block-level segmentation of the

object. Broadly, there are two types of object detection algorithms prevalent today.

Keypoint-based detectors

Keypoint-based algorithms try to search for distinctive points in the test image see if they ‘look’ like

some stored keypoints (extracted from training images) in some feature space. If a lot of keypoint

matches are found in a region of the test image, that region gets a higher score. Typically, the

keypoints are extracted by maximizing some measure of distinctiveness and repeatability. Features

are extracted from a support region around the keypoint to capture local appearance information.

By normalizing the feature descriptor extraction process with respect to scale and in-plane rotation

the keypoint descriptors gain invariance to changes in size and in-plane rotation of the object. For

example, the popular SIFT features [17] define keypoints as extrema in the Difference of Gaussian

filter applied to the image pyramid, and construct the feature descriptor by stacking histograms of

gradient orientations in a circular region around the keypoint whose size proportional to its scale in

the pyramid. SURF [3] also uses a gradient orientation histogram based approach but uses integral

images and box filter approximation of Gaussan filters to speed up keypoint extraction. ORB
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[20] attains rotation invariance by modifying BRIEF [6], which uses a binary features extracted

by comparing point intensity values around the keypoint. The use of binary feature descriptors

speeds up descriptor matching considerably. The advantage of keypoint based object detectors is

that the search space is greatly reduced by the keypoint extraction step and that partial occlusion

can be handled because the object is not represented holistically. On the other hand, to get good

repeatable keypoints, both the keypoint extraction and description steps tend to be quite involved.

Simpler descriptors tend to produce many false-positive matches at test time, leading to large high-

dimensional matching problems. But the biggest drawback of keypoint based approaches is that

since they are only interested in distinctive points, the object of interest needs to be well-textured.

Additionally, since only sparse areas of the object are stored in the model, it is not possible to get

a pixel level binary segmentation of the bounding box unless keypoint descriptors are extracted in

a dense grid, which essentially reduces to a sliding window approach discussed next.

Sliding Window detectors

Sliding window based algorithms work densely on the whole image (and often also at all levels of

the image pyramid). They basically convert the image to some feature space and learn weights for

a rectangular filter such that the convolution of the filter with the feature-image will produce high

scores at regions where the filter covers the object. The filter weights are often learned with the

help of a Support Vector Machine (SVM) with a linear kernel. Recently the Histogram of Oriented

Gradients (HOG) features [7] have become quite popular. HOG divides the image into small cells

(usually 8x8 pixels) and constructs a histogram of gradient orientation from every pixel in the cell,

weighted by the gradient magnitude at the cell. Histograms of blocks of cells are then L1 normalized

to gain contrast invariance. A PCA-reduced and slightly modified version of HOG is used as the

main feature in the highly successful Deformable Part Model (DPM) object detection system [8].

The advantage of sliding window based methods is that detection is as simple as convolving a filter

with the feature-image and picking the best after a non-maximum suppression step. However, the

convolution needs to be done over the whole image pyramid. In addition, algorithms using simple

features like HOG cannot be rotation invariant, a problem that has to be handled by learning

different filters for different object poses and picking the maximum response. Occlusion decreases

the filter response. Hence if a tight threshold is used on the score to increase precision, occlusion

cases will not be handled, causing a sharp drop in recall on a challenging dataset. This seeming

drawback can be used to our advantage, though.
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If one models not only the object but also occlusion and at every HOG cell picks the one with

the higher response, occlusion will not decrease the filter response (provided the occlusion-modelling

filter is general enough). This strategy will prevent occlusion cases from being discarded when a

tight threshold is used on the score to decide detections. This is the main idea behind segmentation

aware object detection [10].

Part-based detectors

Another class of object detectors are worth mentioning here - part-based detectors. These have

been made popular recently by a series of papers [8, 9, 11] and good performance in the Pascal

VOC challenges. These algorithms also learn filters for dense features, but do not represent objects

as a whole. Instead they divide the object into parts and allow the parts to be displaced about

the center by paying a deformation cost. The detection is then the location at which the sum of

the part appearance scores (convolution of part filter with image feature) and deformation cost (a

negative quantity) is maximized. This introduces flexibility and performs better than algorithms

that represent the object as a single filter.

In this thesis I will be working with a sliding window detector that represents the the object

holistically. Ideas for extending the algorithm to a part-based framework are discussed in section 4.

The basic idea is to train two HOG filters - one that models the appearance of the object, and one

that models occlusion, and then choose the label with the higher response at every cell. The second

filter does not model any object specifically, it just serves the purpose of giving a higher response at

occluding areas than the object filter. In this sense, the second filter will be better (more general) if

the dataset has a lot of varied cases of occlusion. In practice due to limited training images, errors

in ground truth labelling and the high dimensionality of features involved, the filter weights will

not be optimal. Hence naively picking the label with the highest response at every HOG cell does

not produce visually consistent results. One often needs to make a grid MRF by making a node at

every HOG cell and connecting pairs nodes with edges. The unary potentials at each node are the

responses of the two filters, and pairwise potentials are edge weights. Typically a labelling scheme

gets a ‘reward’ equal to the edge weight if an only if two nodes connected by an edge have the

same 0/1 label. Maximum a-posteriori labelling is achieved by picking the labelling that maximizes

the sum of all unary and pairwise potentials. A combinatorial search through all labellings would

require time exponential in the number if nodes, so we use network-flow theory to get a quick (and

in many cases, optimal) solution.
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Related Work

Combining detection and segmentation

This thesis builds upon the research and framework of [10], in which the authors use a structured

output SVM to train the HOG filter weights and then emply Quadratic Pseudo-Boolean Optimiza-

tion (QPBO) to infer a MAP labelling on the MRF. They define pairwise terms over nodes that

belong horizontal and vertical edges inside the bounding box, thus encouraging label consistency

along horizontal and vertical edges. [13] also uses detection to aid segmentation but the object

detector is fixed and does not take advantage of segmentation. [22] uses visibility labelling for pixels

inside the bounding box. However, the visibility is not inferred from appearance, and depends just

on the position of the bounding box in the image. Pixels in the bounding box being truncated by

the image boundary are labelled as invisible.

MRF optimization

MAP inference in MRFs is a very active topic of research. All the following algorithms are ways

to pose the MAP inference problem as a graph-cut problem. For MRFs with just pairwise terms,

algorithms such as α-expansion and α − β swap algorithms [4] can be used to infer both binary

and multi-class labels. One α-expansion move allows all nodes to either keep their current label or

take on the label α. An iteration of the α-expansion move involves such moves for all labels in the

label set in some order. According to [4] if all pairwise potentials define a metric, the energy of the

labelling computed using this algorithm is guaranteed to be within a known approximation factor

of the optimum energy. One move of the α− β swap algorithm allows all nodes whose current label

is either α or β to to take on the label either α or β. An iteration of the algorithm involves such

moves for all pairs α and β in the label set in some order. According to [4] if all pairwise potentials

define a semi-metric, the energy of the labelling computed using this algorithm is guaranteed to be
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within a known approximation factor of the optimum energy.

QPBO [16] can be used for exact MAP inference in binary MRFs containing pairwise terms when

all the pairwise potentials are submodular 1. However, it does not perform exact inference when

some of the pairwise terms are not submodular in the sense that it gives null labels for some nodes.

In this case, the persistency property of the algorithm states that there exists an optimum labelling

such that its labellings, for all the nodes for which QPBO does produce a non-null label, are the

same.

Recently [15] has noted better results by using higher-order potentials as opposed to just pairwise

potentials. Intuitively, higher order terms consist of cliques of nodes (such as nodes belonging to the

same segment in the output of an image segmentation algorithm) and the algorithm encourages all

nodes in the same clique to have the same label. This is achieved by converting certain classes of

higher order potentials to submodular functions, which are then optimized as usual using graph-cuts.

It should be mentioned that since we are considering pairwise rewards for two nodes to have the

same label and filter responses as unary potentials, it is intuitively easier to think about the optimum

labelling as one that maximizes the total energy. In addition, the structural SVM formulation for

learning the filter weights introduced later also defines a detection as one that maximizes the dot

product of feature and weight vectors. However, all the graph-cut algorithms minimize the total

energy of the MRF. The conversion from maximization to minimization is described in Section 2.2.1.

Learning MRF weights

In our case learning MRF weights involves learning HOG filter weights (for unary potentials) and

the pairwise weight (same for all pairs). A lot of the recent MRF segmentation papers that use MRF

optimization use weights for features selected by cross validation [15]. [19] uses iterated estimation

of GMM parameters from image data and user interaction to learn the MRF parameters. However,

both these options are intractable in our case since the stacking of 31-dimensional HOG features for

all cells in the bounding box makes a high dimensional space. [12] uses structural SVMs to learn

parameters for unary and higher order potentials for binary segmentation, while [18] extends the

framework to multi-class segmentation.

1ψ(0, 0) + ψ(1, 1) ≤ ψ(0, 1) + ψ(1, 0)
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Chapter 1

Feature representation

Given an image x we want to predict a bounding box enclosing the object of interest and infer

the pixels inside the box that belong to the object. The image is represented in terms of its HOG

features. The 31-dimensional variant of HOG described in [8] is used, with cell size of 8x8 pixels.

A bounding box is represented as p = (px, py), indicating the position of the top left corner of the

bounding box. The width and height of the box are fixed as w and h respectively. Since HOG

features are used to represent an image, the unit of w and h is hog cells. To achieve scale invariance

one can extract features and search over the entire test image pyramid instead of just the image

itself. The vector v consists of w ∗ h binary variables, each indicating whether the corresponding

HOG cell is labelled as belonging to the object or not. Hence the labelling of an image is of the

form y = (px, py,v).

A joint feature vector is constructed by stacking five components described below.

The first component corresponds to the HOG features, two groups stacked together. The HOG

features of the cells labelled as not-object are zeroed out in the first group, and vice versa for the

second group.

 (v⊗ 1N )� φ(x,y)

(1wh − v⊗ 1N )� φ(x,y)

 (1.1)

where� denotes component-wise multiplication between two vectors and⊗ is the Kronecker product.

φ(x,y) denotes the vector formed by stacking the HOG features of all cells of image x inside bounding

box p.

The second component is used to learn a prior for a cell to not belong to the object.
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[1wh − v] (1.2)

The third component is used to learn a cost for truncation by the image boundaries.

c(p) (1.3)

which denotes the number of cells in bounding box p lying outside the image boundaries.

The fourth component encourages smoothness of the visibility labelling and is used to learn the

weight for pairwise terms. First, we oversegment the image using the gPb - UCM algorithm [1]. To

maximize the fraction of pairs of nodes having the same labelling, expected over all image segments,

we include

1

|C|
∑
c∈C

1(|c|
2

) ∑
(i,j)∈c

1(vi = vj) (1.4)

where C is the set of all segments.

The last component is used to learn a bias for the model, and is used while training a joint

model for multiple views of the same object or while training models for two objects that need to

be compatible with each other (see Section 3.1).

1 (1.5)
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Chapter 2

Structured Training and Inference

2.1 Training feature weights with a Structured SVM

Our goal is to learn a function f : X → Y that predicts a bounding box and labelling y ∈ Y given

an image x ∈ X. This is done using the structured learning framework [14] as:

f(x) = argmax
y∈Y

wTΨ(x,y) (2.1)

where w ∈ Rd is the vector of learned model parameters (weights) and Ψ(x,y) ∈ Rd is the joint

feature vector constructed as described in Chapter 1.

The model parameters are learned in the max-margin framework with the 1-slack formulation

[14]:

min
w,ξ

1

2
wTw + Cξ

s.t.

∀(ŷ1, ŷ2, . . . , ŷN ) ∈ YN :
1

N
wT

N∑
i=1

(Ψ(xi,yi)−Ψ(xi, ŷi)) ≥
1

N

N∑
i=1

∆(yi, ŷi)− ξ (2.2)

Intuitively this formulation requires that the score Ψ(xi,yi) of any ground truth labelled image xi

must be greater than the score Ψ(xi, ŷi) of any other labelling ŷi by the distance between the two

labellings ∆(yi, ŷi) minus the slack variable ξ, where w and ξ are minimized. The above formulation

has | Y |N (exponential) constraints, one for each possible combination of labels (ŷ1, ŷ2, . . . , ŷN ) ∈

Y N . Because training by satisfying such a huge number of constraints is intractable, the cutting

plane training algorithm deals with this problem by maintaining a working set W of most violated
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constraints and choosing combinations (ŷ1, ŷ2, . . . , ŷN ) only from W. The procedure for computing

the most violated constraint for a given labelled training example is called ‘loss augmented inference’

and is very similar to the actual inference procedure. It is described in the next section.

The distance between the two labellings, also known as the loss function, depends just on the

portion of overlap between the boxes:

∆(yi, ŷi) =


0 if yi = ŷi = ∅

1 if yi = ∅, ŷi 6= ∅ or yi 6= ∅, ŷi = ∅

1− area(yi

⋂
ŷi)

area(yi

⋃
ŷi)

otherwise

(2.3)

We use Andrea Vedaldi’s MEX implementation [21] of Joachims’ Structural SVM [14] to learn

the model.

2.2 Inference

Inference for an image x is performed as:

y∗ = argmax
y∈Y

wTΨ(x,y) (2.4)

Figure 2.1 shows the result of inference in terms of a heatmap of scores wTΨ(x,y and the subse-

quent output. Note that redder regions represent higher scores in the heatmap and the heatmap

corresponds to location of the top-left corner of the bounding box.

(a) Image (b) Score heatmap (c) Detection

Figure 2.1: Detection process

For an image xi with ground truth labelling yi loss augmented inference gives the most violated

constraint ŷ as:

ŷ = argmax
y∈Y

wTΨ(xi,y) + ∆(yi,y) (2.5)
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Here y ∈ Y = P ×V , where P is the space of all possible locations of the top left corner of the

bounding box and V is the space of all possible 0/1 labels for the w ∗ h HOG cells in the bounding

box. Searching through this exponential space for the most violated constraint is impractical. Hence

in this section we discuss an inference strategy where the bounding box locations are enumerated

and given a location p, v is inferred by graph cut. In Section 2.3 we discuss a strategy for pruning

the P space by using Deformable Part Model detections.

Given a bounding box location p, the visibility variables v are inferred using the following

formulation:

v∗ = argmax
v

(
w∗h∑
i=1

(
wT
h,iφi(x,p)

)
· vi +

w∗h∑
i=1

(
wT
ĥ,i
φi(x,p)

)
· (1− vi) +

w∗h∑
i=1

wp,i · (1− vi) +

1

|C|
∑
c∈C

1(|c|
2

) ∑
(i,j)∈c

we · 1(vi = vj)

 (2.6)

The first two terms are unary potentials, third term corresponds to the prior for a cell to not belong

to the object and the last term is made of pairwise potentials. wh,i are the weights for cell i when it is

visible (first group of first component in the feature vector), wĥ,i are the weights for cell i when it is

not visible (second group of first component in the feature vector) and φi(x,p) are the HOG features

for cell i. Refer (1.1). wp,i is the prior for cell i learnt from the second component of the feature

vector (refer (1.2)). we is the weight of pairwise terms (a positive number because of the maximizing

formulation) learnt from the fourth component of the feature vector (refer (1.4)). Problem (2.6) can

be solved using QPBO [16], but before that it has to be formulated as a minimization problem.

2.2.1 Inferring Visibility variables by QPBO

Suppose that

Q =

w∗h∑
i=1

wT
h,iφi(x,p) + wT

ĥ,i
φi(x,p) (2.7)

Then it follows that the first two terms of (2.6) can be rewritten as

10



w∗h∑
i=1

(
wT
h,iφi(x,p)

)
· vi +

w∗h∑
i=1

(
wT
ĥ,i
φi(x,p)

)
· (1− vi) =

Q−

(
w∗h∑
i=1

(
wT
ĥ,i
φi(x,p)

)
· vi +

w∗h∑
i=1

(
wT
h,iφi(x,p)

)
· (1− vi)

)
(2.8)

And hence (2.6) can be rewritten as a minimization problem as follows:

v∗ = argmin
v

(
w∗h∑
i=1

(
wT
ĥ,i
φi(x,p)

)
· vi +

w∗h∑
i=1

(
wT
h,iφi(x,p)

)
· (1− vi) +

w∗h∑
i=1

−wp,i · (1− vi) +

1

|C|
∑
c∈C

1(|c|
2

) ∑
(i,j)∈c

−we · 1(vi = vj)

 (2.9)

The procedure is summed up in Algorithm 1. We use Shai Bagon’s MEX wrappers [2] to the

QPBO library by Kolmogorov [5] to run the QPBO optimization in Matlab.

Algorithm 1 Seg-Detect: Detect object by searching over whole image

Require: HOG-image x, Model weights w, feature function f(x,p,v) implementing Chapter 1
Y ← {(i, j) : (i, j) ∈ x}
p∗ ← (0, 0)
v∗ ← 0
maxscore← 0
for all p in Y do

v = argmax
v

(
w∗h∑
i=1

(
wT
h,iφi(x,p)

)
· vi +

w∗h∑
i=1

(
wT
ĥ,i
φi(x,p)

)
· (1− vi) +

w∗h∑
i=1

wp,i · (1− vi) +

1

|C|
∑
c∈C

1(|c|
2

) ∑
(i,j)∈c

we · 1(vi = vj)


score← wT f(x,p,v)
if score > maxscore then

p∗ ← p
v∗ ← v

end if
end for
return y∗ = (p∗,v∗)
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2.3 Using DPM detections to prune the bounding box search

space

Deformable Part Models [8] is a highly successful algorithm for detecting objects (refer to the section

on ‘Part-based detectors’ in Introduction for more information). However, occlusion reduces the

score of the part being occluded and hence the score of the entire detection. So occluded objects

are often discarded if the score threshold is set high, and if the scene is highly textured the score

of an occluded detection will often be less than that of a false positive. But due to the part-based

approach occluded detections almost always show up in the top few detections and hence they can

be used to prune the space P. In practice we take the first 3 detections made by a DPM model

trained using images of the fully visible object and restrict y in (2.4) and (2.5) to the union of these

3 bounding boxes. The search is still required because DPM boxes are usually not tight around

the object and the segmentation-aware detection has a box of fixed size. This makes normal and

loss-augmented inference significantly faster. The procedure is summed up in Algorithm 2.

Algorithm 2 DPM-Seg-Detect: Detect object by searching over DPM hypotheses

Require: HOG-image x, Model weights w, feature function f(x,p,v) implementing Chapter 1,
DPM detection bounding boxes D1, D2, D3

Y ← {(i, j) : (i, j), (i+ w, j + h) ∈ D1

⋃
D2

⋃
D3}

p∗ ← (0, 0)
v∗ ← 0
maxscore← 0
for all p in Y do

v = argmax
v

(
w∗h∑
i=1

(
wT
h,iφi(x,p)

)
· vi +

w∗h∑
i=1

(
wT
ĥ,i
φi(x,p)

)
· (1− vi) +

w∗h∑
i=1

wp,i · (1− vi) +

1

|C|
∑
c∈C

1(|c|
2

) ∑
(i,j)∈c

we · 1(vi = vj)


score← wT f(x,p,v)
if score > maxscore then

p∗ ← p
v∗ ← v

end if
end for
Dset = {D : p∗ ∈ D,D ∈ {D1, D2, D3}}
return y∗ = (p∗,v∗), D∗ = argminD∈Dset area(D)

This algorithm also has better performance (in terms of precision-recall, refer Section 4.2) than

DPM alone on our datasets, because in some occluded cases the true detection is second or third
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ranked in terms of DPM score, but since we search over all three top boxes we find the correct

location. Figure 2.2 shows two such cases. The top left corners of the bounding boxes show their

rank and score.

(a) Image (b) DPM detections (c) Rescored DPM (d) Final Detection

Figure 2.2: Detecting Pairs of Objects

2.4 Extending the algorithm

The algorithms described above have two important shortcomings: they can detect objects of a

single size and pose. However, both these shortcomings have known solutions. To enable detection

of objects independent of scale the test image is converted in to an image pyramid, features are

extracted over the whole pyramid and the search for most violated constraint as well as for score

maximize detection also proceeds over the whole pyramid. To enable the algorithm to detect objects

in multiple poses one needs to train a joint model by stacking feature vectors for all components into

one long feature vector. For mode details refer Section 3.1, which discusses joint models for pairs of

objects.
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Chapter 3

Detecting Pairs of Objects

In this section we discuss an approach for detecting ‘configurations of objects’ i.e. detecting not

only an object of interest but also all other objects occluding it. As a first step we have developed

an algorithm for detecting the object of interest and the one other object occluding it.

3.1 Training joint models

As explaned in Section 3.2, detecting pairs of objects involves using the filter weights of one model

while inferring visibility for another object. Weights in individual models trained as described in

Section 2.1 are not compatible with weights in models for other objects. Hence, the two models must

be trained jointly. The dataset must be marked with model ID along with bounding box top-left

location, and it should have separate visibilities for both the objects. While training, the feature

vectors must be stacked together, with a zero vector if a particular object is not present in the image.

Here the fifth component of the feature vector, the constant 1, comes in handy. The SVM learns

a weight for this constant feature (bias) for both models that makes them interoperable. The loss

function, as described in (2.3) now returns the loss of a particular label with the ground truth label

of the same class having the highest overlap.

3.2 Inference

First we run a DPM detector for both objects individually and establish a few hypotheses. Next

we re-score these hypotheses by running the segmentation aware object detector as described in

Algorithm 2. This algorithm returns the highest scoring bounding box location p∗, its labelling v∗

14



and the DPM box D∗ that p∗ belongs to. If the D∗ for the two objects do not intersect nothing more

needs to be done; their respective p∗ and v∗ are returned. Else, we run a second pass, searching

simultaneously over the two intersecting DPM boxes. This time we run an α-expansion algorithm

in the area of intersection of the two HOG filters for all pairs of filter areas within their respective

DPM boxes. The first iteration of the α-expansion chooses between yes/no object-1 and the second

iteration chooses between the previous label and object-2. In the rest of the area a simple binary

yes/no choice is made for the corresponding object. The procedure is summed up in Algorithm 3.

Note that p1(i) means the linear index position in p1 of the position that is represented by i in p2.
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Algorithm 3 Pair-Detect: Detect object by searching over DPM hypotheses

Require: HOG-image x, Model weights w1 and w2, feature function f(x,p,v) implementing Chap-
ter 1
(p∗1,v

∗
1, D

∗
1)← DPM-seg-detect(x,w1, f)

(p∗2,v
∗
2, D

∗
2)← DPM-seg-detect(x,w2, f)

if D∗1
⋂
D∗2 = ∅ then

return y∗ = (p1
∗,v1

∗,p2
∗,v2

∗)
else
Y1 ← {(i, j) : (i, j), (i+ w1, j + h1) ∈ D∗1}
Y2 ← {(i, j) : (i, j), (i+ w2, j + h2) ∈ D∗2}
p∗1 ← (0, 0),p∗2 ← (0, 0)
v∗1 ← 0,v∗2 ← 0
maxscore← 0
for all (p1,p2) ∈ Y1 ×Y2 do

v1 = argmax
v

(
w1∗h1∑
i=1

(
wT

1,h,iφi(x,p1)
)
· v1,i +

w1∗h1∑
i=1

(
wT

1,ĥ,i
φi(x,p1)

)
· (1− v1,i)+

w1∗h1∑
i=1

w1,p,i · (1− v1,i) +
1

|C|
∑
c∈C

1(|c|
2

) ∑
(i,j)∈c

w1,e · 1(v1,i = v1,j)


score← w1

T f(x,p1,v1)

v2 = argmax
v

(
w2∗h2∑
i=1

(
wT

2,h,iφi(x,p2)
)
· v2,i +

w2∗h2∑
i=1

[(
wT

1,h,p1(i)
φi(x,p2)

)
· v1,p1(i)+(

wT
1,ĥ,p1(i)

φi(x,p2)
)
· (1− v1,p1(i))

]
· (1− v2,i) · 1(1 ≤ p1(i) ≤ w1 ∗ h1)+

w2∗h2∑
i=1

(
wT

2,ĥ,i
φi(x,p2)

)
· (1− v2,i) · 1(1 < p1(i) > w1 ∗ h1)+

w2∗h2∑
i=1

w1,p,i · (1− v2,i) +
1

|C|
∑
c∈C

1(|c|
2

) ∑
(i,j)∈c

w2,e · 1(v2,i = v2,j)


score← score+ w2

T f(x,p2,v2)
if score > maxscore then
p1
∗ ← p1,p2

∗ ← p2

v1
∗ ← v1,v2

∗ ← v2

end if
end for

end if
return y∗ = (p1

∗,v1
∗,p2

∗,v2
∗)
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Chapter 4

Results

4.1 Datasets

Evaluation has been performed on the following datasets:

Dataset Description
Lysol 43 color images, 320x240, main object: Lysol bottle
Cleaner 13 color images, 320x240, main object: Cleaner bottles
Cleaner-2 62 color images, 320x240, main object: Cleaner bottle
Ziplock 40 color images, 320x240, main object: Ziplock box
Double 49 color images, 320x240, main objects: Lysol bottle and Cleaner bottle

Table 4.1: Datasets used for evaluation

The main object(s) in all datasets were occluded with various household objects.

The datasets were labelled with location of the top-left corner of the bounding box and pixel-level

visibility labels inside the bounding box. In case of Double dataset, images containing two objects

together were labelled with both. Figure 4.1 shows a sample ground truth labelling, taken from the

Cleaner-2 dataset and the gPb-UCM segmentation that is used to define the pairwise terms.

(a) Image (b) Segmentation (c) Labelling

Figure 4.1: Ground truth labelling
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4.2 Performance Evaluation

We perform precision-recall and average precision evaluation on all the datasets (Pair-Detect on

Double dataset and DPM-Seg-Detect on other datasets). For comparison, we also run the same

evaluations using a DPM model trained using about 5 images of the fully visible object. Table 4.2

shows the AP performance of both algorithms.

Dataset DPM-Seg-Detect AP DPM AP
Lysol 0.901 1
Cleaner 1 0.706
Cleaner-2 0.908 0.785
Ziplock 1 1

(a) DPM-Seg-Detect vs. DPM

Dataset Pair-Detect AP DPM AP
Double (object: Cleaner) 0.772 0.524
Double (object: Lysol) 1 1

(b) Pair-Detect vs. DPM

Table 4.2: Average Precision performance

Figure 4.2 shows the various Precision-Recall curves.
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(a) Cleaner dataset P-R (b) Cleaner-2 dataset P-R

(c) Lysol dataset P-R (d) Ziplock dataset P-R

(e) Double (object: Cleaner) dataset P-R (f) Double (object: Lysol) dataset P-R

Figure 4.2: Precision-Recall curves
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4.3 Pairs of Objects

In this section we show two examples of the effectiveness of using the Pair-Detect Algorithm 3

involving α-expansion in predicting a consistent visibility labelling pattern for both objects. The

images are taken from the Double dataset. We also show the detections and visibility labelling

predicted by the simple DPM-Seg-Detect Algorithm 2 to compare against in Figure 4.3.

(a) Image (b) DPM-Seg-Detect(1) (c) DPM-Seg-Detect(2) (d) Pair-Detect

Figure 4.3: Detecting Pairs of Objects
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Chapter 5

Future Work

The object detection system described in this thesis can be made more generalized by making it

scale-invariant and able to detect objects at different discretized poses, as mentioned in Section 2.4.

One drawback of the current approach is the use of rigid filters, which are not very good at

handling small changes in perspective and scale. Recent research, as described in the introduction

section, has shown that a part-based approach is much more robust in this aspect. So an important

extension for this work would be to make it part-based. This can be done by modifying the part

filters of the DPM model to be Seg-Detect (Algorithm 1) implementations.

To introduce more robustness, pairs of part filters that overlap with each other can also be Pair-

Detect (Algorithm 3) implementations. This would not only force clean boundaries between the

parts, but more importantly allow a bit more of deformation in lieu of better agreement between

parts regarding visibility of their respective pixels.

Since DPM has a Latent SVM training approach, careful thought must be given to the training

stage of such a hybrid algorithm.
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