Targeted Object Striking for a 7-DoF Manipulator: A Residual
Learning Approach

Priyansh Sinha*
Rishin Chakraborty

priyansh.sinha@research.iiit.ac.in
rishin.chakraborty@research.iiit.ac.in
International Institute of Information
Technology
Hyderabad, Telangana, India

Samarth Brahmbhatt
Independent Researcher
samarth.robo@gmail.com

Nagamanikandan Govindan
nagamanikandan.g@iiit.ac.in
International Institute of Information
Technology
Hyderabad, Telangana, India

Figure 1: Experimental Setup in Simulation and Real World

Abstract

As robotic manipulators start performing more daily tasks, striking
can be a useful method for transporting objects because it sig-
nificantly increases the reachable workspace. However, striking
methods are underexplored compared to pick-and-place because
of the difficulty of modeling and executing striking interactions.
In this paper, we develop an algorithm for striking objects so that
they stop at a target location. We start with an optimizer in simula-
tion that solves for the striking velocity given the relative target
position, and perform system identification to set the simulation
parameters. However, real-world striking with this model does not
have high accuracy because it is unclear which parameters should
be considered for identification in practice. Therefore, we finally
develop a residual learning approach that subsumes all unmodeled
differences between the simulation and the real-world environment

“Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

AIR 25,

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-X/YYYY/MM

https://doi.org/XXXXXXX.XXXXXXX

into action, that is, striking velocity residuals. Our real-world ex-
periments show that the residual learning model results in 81.6%
more accurate object strikes.

CCS Concepts

- Computer systems organization — Robotic control; Robotic
autonomy.

Keywords

Striking Manipulation, Non-prehensile Manipulation, Sim-to-Real,
Workspace Expansion, Inverse dynamics solver, Residual learning

ACM Reference Format:

Priyansh Sinha, Rishin Chakraborty, Samarth Brahmbhatt, and Nagamanikan-
dan Govindan. 2025. Targeted Object Striking for a 7-DoF Manipulator: A
Residual Learning Approach. In Proceedings of July 02-05, 2025 (AIR ’25).
ACM, New York, NY, USA, 7 pages. https://doi.org/XXXXXXX . XXXXXXX

1 Introduction

Humans interact with objects through various manipulation strate-
gies, including grasping, pushing, striking, and throwing. While
prehensile manipulation, such as grasping, has been the predomi-
nant focus in robotic manipulation, it is inherently limited by the
robot’s reachability and geometries of the object. In contrast, non-
prehensile manipulation [9] (NPM, manipulation not involving
grasping), particularly striking, extends a robot’s effective opera-
tional space by significantly enhancing the reachable configurations
and degrees of freedom available for object placement. This makes

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

AIR 25, Jodhpur, India,

NPM useful when conventional grasping-based manipulation is im-
practical. Striking finds real-world applications in rapid transport
and sorting, especially in cluttered environments without needing
multiple arms or complex grippers.

Striking tasks entail high-velocity contacts, complex frictional
interactions, and surface-dependent restitution. Traditional sys-
tem identification cannot capture all these effects simultaneously,
and Reinforcement Learning methods are data-hungry and unsta-
ble. Our goal is a lightweight, reproducible pipeline that unifies
physics-based planning with learned residuals.

In this paper, we develop a robot arm motion controller that can
strike objects such that they stop at the target location. Given an
‘object’ and an ’environment’, we assume an initial training phase in
which strikes can be conducted with the robot, and their execution
can be observed. We develop an algorithm that uses data from this
training phase to learn a model that can predict the striking velocity
given the initial and target position of the object. Striking velocity
is defined as the 6 DoF velocity of the robot end-effector at the
initial object position. While this model is expected to generalize to
unseen initial and target positions, generalizing to unseen objects
and surfaces is out of scope of this work. Our experiments are
conducted on flat horizontal surfaces, although our algorithm does
not require the surface to be either flat or horizontal.

Our key methodological novelties are the following:

(1) Unlike prior work that relies on manual tuning or brute-force
approaches, we use machine learning to learn a residual term
to absorb all unmodeled effects.

(2) We combine a MuJoCo+NLopt inverse-dynamics solver with
a learned residual in a single pipeline, rather than treating
sim-to-real and control as separate modules.

(3) Our approach reduces required hardware trials by an order
of magnitude compared to a traditional machine learning
approach.

We start with a simulation-based inverse dynamics solver that
calculates the striking velocity given a pair of initial and final lo-
cations of a point mass object. The natural next step is to decide
the values of the parameters of the simulator used in the inverse
dynamics solver, such that they match the real world. This can be
done using data collected from the training phase. This approach is
known in the literature as system identification [1].

However, this approach has some limitations that prevent accu-
rate performance in terms of error between the target and achieved
object stopping position. This is also seen in our experiments in Sec-
tion 4.2.2. While robotics simulators are becoming more accurate
(we use MuJoCo[13]), the simulator might not expose all the param-
eters that affect striking in the real world. In addition, it is desirable
to be parsimonious while selecting parameters for system identifi-
cation to limit the amount of training data required, but it is not
clear which specific parameters to select. This necessitates a brute
force approach that sweeps across all possible sets of simulation
parameters (as outlined in Section 3.3), which is computationally
expensive.

Therefore, in this paper we explore a residual learning approach
in which we do not seek to identify specific simulation parameters
or their values. Instead, we assume that the net effect of mismatch
between simulation and the real world can be captured as an delta

Chakraborty et al.

i.e. an additive residual term that is added to the striking velocity
predicted by the simulator. The residual term has the same units as
the action space of the algorithm i.e. 6 DoF velocity. We parameter-
ize the model that predicts the residual striking velocity from the
initial and target object positions using a neural network, and learn
the neural network from the data collected in the training phase.
Finally, we get the striking velocity to be executed on the robot by
summing the inverse dynamics solution and the predicted residual.
Our real-robot experiments in Section 4.2.2 show that this residual
learning approach yields significantly more accurate strikes than
the system identification approach.

To summarize, we make the following contributions in this pa-

per:

(1) A MuJoCo simulator-based inverse dynamics solver that
calculates the ‘ideal’ (i.e. assuming simulation matches the
real world perfectly) striking velocity given a pair of initial
and target object positions.

(2) A residual learning approach that predicts an additive term
to the solver striking velocity, which compensates for all
modeled and unmodeled mismatches between the simulator
and the real world.

(3) Experiments with a 7 DoF robot manipulator in the real
world, that compare our proposed residual learning approach
to baselines.

2 Related Works

Engaging in NPM provides inherent challenges due to the under-
constrained nature of the problem, making it challenging to ap-
proach using optimization [8], [2]. Recent developments on hybrid
trajectory optimization (TO) frameworks have demonstrated effi-
cient methods for planning contact-based manipulation tasks, such
as those detailed in [5], [3] and [10]. Studies such as those by [10]
have introduced Mathematical Programs with Complementarity
Constraints (MPCC) for trajectory optimization in non-prehensile
planar manipulation for pushing action. This method is capable of
switching between sticking and sliding contact modes, demonstrat-
ing improved performance over traditional approaches.

While pushing techniques have been extensively researched,
striking remains under-explored in robotics literature. [11]. Strik-
ing involves dynamic, high-velocity impacts that pose challenges
distinct from those found in static grasping or controlled pushing.
Early efforts in dynamic manipulation often relied on model-based
controllers tuned for specific tasks; however, these approaches
struggled with the inherent uncertainties of impact dynamics.

Zheng et al. introduced TossingBot[15], a system in which a ro-
bot learns to throw arbitrary objects by leveraging residual policy
learning to account for the complex physics during the throw-
ing (or striking) phase. By learning a corrective residual over a
simple baseline controller, TossingBot can adapt to variation in
object configurations and dynamic contacts. While TossingBot has
demonstrated impressive capabilities in throwing arbitrary objects
with high accuracy and speed, there are still many areas where
improvements could be made to handle complex and unpredictable
environments more effectively:(1) Variability in Object Properties-
the system may struggle with objects that have significantly differ-
ent physical properties (e.g., weight or surface friction) than those it

Targeted Object Striking for a 7-DoF Manipulator: A Residual Learning Approach

was trained on. (2) Robustness to external factors — Since throwing
does not require accounting for interactions between the object
and the surface, it will influence the performance of other actions
like striking which stays in constant contact with the surface. (3) It
relies on a highly simplified inverse dynamics model that assumes
air resistance-free parabolic object trajectories, enabling closed-
form solutions. However, this approach is insufficient to account
for various environmental disturbances. Employing a full-fledged
simulation system like MuJoCo[13] as a model, allows for a more
accurate and iterative inverse dynamics solver.

In addition to these approaches, recent advancements have ex-
plored reinforcement learning techniques for NPM. For instance,
research presented by [6] emphasizes the importance of robust
compensation mechanisms in robot actions involving dynamic
motions, highlighting how physics simulations can be critical for
testing before deploying on real hardware. While this aligns with
our proposed Sim-to-Real framework, reinforcement learning intro-
duces several challenges. It is prone to high variance and instability,
heavily reliant on large amounts of trial-and-error data, and often
sample inefficient and computationally demanding. These factors
can hinder deployment in resource-constrained environments. In
contrast, a simpler, task-specific method mitigates these limitations
by reducing computational overhead and improving practicality.

Finally, integrating learning-based methods with optimization
frameworks is gaining traction as a promising way to enhance the
reliability and accuracy of robotic manipulation tasks. By leverag-
ing real-world data and simulation outcomes, our approach aims
to minimize discrepancies between simulated and actual robot per-
formance, thus addressing the limitations identified in previous
research.

3 Methodology

This section outlines the approach used to optimize and execute
striking motions with a 7-DOF manipulator, ensuring accurate and
reliable real-world performance. Our objective is to determine the
optimal striking speed and contact angle (see Figure 3) such that
when the object is struck toward its center of mass, it comes to
rest precisely at the target position. First, a hardware controller is
developed to generate smooth and precise trajectories that achieve
the desired striking speed and position. An inverse dynamics solver
using Mujoco[13] is then developed to determine optimal striking
parameters—speed and angle, given the values of simulation pa-
rameters obtained through system identification. Next, a residual
learning framework is introduced to account for the unmodeled
real-world factors and compensate for the discrepancies between
simulation and hardware execution. Finally, the learned residu-
als are applied to refine hardware commands, improving accuracy
in real-world striking tasks. Figure 2 shows the overview of the
proposed pipeline.

Problem Statement: Given the initial position of the object i
and the desired final position f;, find the desired cartesian striking
speed v and angle of approach theta so that the object comes to
rest at fy after the impact.

The two key challenges with this approach are as follows: (1)
Compared to pick-and-place or pushing, where end-effector posi-
tion is the key consideration, for striking manipulation, we require

AIR 25, Jodhpur, India,

| Raat Striking Speed. |
Contacl Angle

(¥real Braalt 71

Initial Object Position

{from Carmera) {from Camera)

Sim Striking Speed
» and Co ngle |
Vgim: Bgiml)

—»/ Hardware Controsier |- Tinal Obyect Posltion / s

Voo

Invesse Dynamics
Solver

Figure 2: Overview of the Residual Learning Pipeline

precise control over end-effector position as well as velocity so
that the object can be struck with the desired velocity. To tackle
this, we have designed a low-level controller that executes velocity
trajectories accurately.

(2) Striking actions are affected by several intrinsic material prop-
erties of the object, robot, and environment(including the surface).
These are difficult to account for and model accurately in a simu-
lation environment, making it difficult to train a model to predict
them. Instead, we introduce a single residual term that accounts
for the effects of all these unmodeled parameters, and we train our
model to predict this residual term.

Figure 3: We determine the required striking speed and con-
tact angle for the object to stop at the target location. Here,
the contact angle is the angle that the end-effector trajectory
makes with the negative x-axis

3.1 Low Level Control

For effective striking, the robot’s end-effector must strike the object
precisely at the desired point of contact with the desired velocity.
The primary challenge is generating and executing a trajectory that
defines both positions and corresponding velocities as functions of
time.

To address this, we utilize the in-built kinematics solver provided
by the xArm Python package[14] along with a custom wrapper
function. This wrapper computes a smooth velocity profile for a
linear trajectory with the following features:

(1) Striking Speed: The desired speed attained during the mo-

tion.

(2) Acceleration: The Cartesian acceleration of the end-effector.

(3) Striking Position: The target position where the strike

is executed; the end-effector reaches this position at the
specified striking speed.

AIR 25, Jodhpur, India,

(4) Pre-strike Position: A point located 10 mm in front of the
striking position. Here, the end-effector achieves the striking
speed and maintains it uniformly until reaching the striking
position.

(5) Starting Position: Based on constant acceleration, this is
the point in front of the object from which the end-effector
begins accelerating to achieve the striking speed by the pre-
strike position.

(6) Stopping Position: The point where the end-effector comes
to a smooth stop after completing the strike.

(b) Pre-strike position

(c) Strike position

(d) Stopping position

Figure 4: Key Robot poses during the striking action

The wrapper function computes the pre-strike and stopping
positions using the given striking speed and acceleration, and then
employs the xArm linear trajectory function to execute the entire
trajectory.

3.2 Inverse Dynamics Solver

The Inverse dynamics solver is formulated using Mujoco and NLOPT.
Its objective is to determine the optimal striking speed (v) and angle
of approach () required to move the object from a given initial
position to a desired final position (fy).

To achieve this, an optimization solver utilizing the NLopt pack-
age is employed [4]. The solver begins with randomly initialized
values for the Striking parameters: striking speed(v;) and angle (6;),
executes the motion in MuJoCo to strike the object, and records
the resulting final position (f). The error between f and f; is then
computed, and the striking parameters are iteratively refined until
the error falls below a predefined threshold. This approach ensures
precise determination of striking parameters, improving accuracy
and reliability in real-world execution.

Chakraborty et al.

Velocity vs Position

;a

Actual Velocity
== Desired Velocity
=== Strike Positon
=== Pre-strike Position
=== Start Position
=== Stug Position

¥ = -
Pasition {(mm)

Velocity (mm/s)

04

Figure 5: Velocity vs Position plot obtained using our Low
Level Controller

Algorithm 1: Optimization of Striking Parameters using
NLopt and MuJoCo

Input: Desired final position fy, error threshold e

Output: Optimized parameters (vsim, Osim)

Initialize striking speed v « vy and angle 6 <« 6y randomly;

repeat
Run MuJoCo simulation with parameters (v, 6) to obtain

final position f;
Compute error E «— || f — fylI;
Update (v,) using NLopt to minimize E;
until E < ¢;
return (vsim, Osim);

3.3 System Identification

A simulation environment is developed in MuJoCo to closely repli-
cate the real-world setup, consisting of a table with a specified
coefficient of friction and an object placed on it. To create an accu-
rate model, we use all known physical parameters such as mass and
surface area exactly, and then we perform system identification [1]
to refine the simulation parameters, focusing on matching the final
positions for the given striking velocity and contact angle.

We collect a set of strikes on the hardware, keeping the initial
object position constant and noting the striking speed (V), contact
angle(6), and final position(F). Then, we perform strikes with the
same striking speed and contact angle in simulation, noting the
final position achieved in simulation(F”). We run NLopt to minimize
the function F — F’/. We optimize the following set of values:

e Contact parameters:
— friction (the 3-element friction array: sliding, torsional,
rolling)
— solref (solver reference parameters for contact)
— solimp (solver impedance parameters for contact)
— restitution (elasticity of the collision)
e Fluid coefficients:
— fluidcoef f's (contains drag and lift coefficients)
o Inertia matrix:
— inertia (3-element diagonal of the inertia tensor)

Targeted Object Striking for a 7-DoF Manipulator: A Residual Learning Approach

Algorithm 2: Optimize MuJoCo Simulation Parameters via
NLopt

Input: Hardware dataset {(V;, 0;, Fl-)}ﬁi 1> initial parameter
set po, threshold €
Output: Optimized simulation parameters p*
Define p = {friction, solref, solimp, restitution,
fluid_coeffs, inertia};
P < Po;
repeat
E « 0;
fori=1to N do
Run MuJoCo simulation with strike parameters
(Vi, 0;) using current p to obtain final position Fl.’ :
E — E+|IF; - F||;
Update p with NLopt to minimize E;
until E < ¢;
return p;

3.4 Residual Learning

Due to unmodeled parameters in the real world, the final position
achieved in hardware may differ from that in simulation for the
same striking speed and angle. To bridge this gap, we model the
discrepancy between simulation and real-world commands as a
residual.

Data is collected on the hardware for 500 randomly selected
combinations of initial positions, striking speeds, and striking an-
gles. The hardware measurements for striking speed and angle
are recorded as vy, and 60,41, respectively, while the path length
between the initial and final positions is captured as Py and Py,.

The MuJoCo optimizer computes the simulation-based striking
speed and angle, denoted as v, and 0, for the corresponding path
lengths. The residuals are then computed as:

AV = 0peq) = Usim
A8 = Orear — Osim
which serve as the ground truth.

A deep learning model is trained on four independent variables:
Py, Py, vsim, and 05, and it predicts the residuals Av and A0.

3.4.1 Model Architecture.

A multi-layer perceptron (MLP) architecture was employed with
three hidden, densely connected layers comprising 128, 64, and
32 neurons, each using ReLU activations. To prevent overfitting,
a batch normalization layer and a dropout layer were added. The
output layer, with two neurons and a linear activation, predicted
the residuals Av and Af. The model received four input features: Py,
Py (path lengths in x and y), vsj;m (simulation striking speed), and
05 (simulation striking angle). The dataset was split into training
and test sets in a 90:10 ratio, with the training set further divided
into training and validation subsets (also 90:10), randomized each
epoch. The Mean Squared Error (MSE) loss function was used for
its effectiveness in penalizing large errors and accelerating con-
vergence. Standard scaling (zero mean, unit variance) was applied
during preprocessing, and batch normalization layers within the
network further helped reduce overfitting. The Adam optimizer,

AIR 25, Jodhpur, India,

well-suited for regression, was used with an initial learning rate of
1073 and a step decay strategy, halving the rate if validation MAE
did not improve over five epochs, down to a minimum of 107%. A
batch size of 32 balanced convergence speed and computational
efficiency. Training was conducted over 500 epochs, beyond which
improvements were minimal. Early stopping was implemented
if no validation improvement occurred over 20 epochs. The final
model achieved a validation MAE of 0.015, with further hardware
validation discussed in Section 4.

3.5 Hardware Striking using the Residual

Initial Gyt Pasition Irverse Dyramica

R 1 Angle
{iram Camers) Salver Al
. ;
Target Posiion

N Raal Sirking Speed,

| + Jo ContactAngle s Harehwara Conmretar |

Wz [¥imat: ool

]

Figure 6: Final execution of the Strike after computation of
Av and A6 from residual model. Note: (+) denotes the Sim
Striking speed is being added with the residuals.

To perform a strike on the hardware targeting a specific final
position, the process begins with object detection and determina-
tion of its initial position in the robot frame. The initial and final
positions are then used to compute the path length parameters Py
and Py. These parameters are fed into the Mujoco optimizer to
predict the simulation-based striking speed (vs;,) and angle (Osim).

Subsequently, Py, Py, 0sim, and Osim are provided as inputs to
the residual learning model, which predicts the residuals Av and
AO. These residuals are added to the optimizer outputs to obtain
the required hardware commands:

Vreal = Usim + Av

ereal = thetagim + AO

4 Results

This section describes the setup we used for our experiments, out-
lines the experiments and discusses the results obtained. In this
section we evaluate our proposed residual learning algorithm as
well as the system identification approach by conducting strikes in
the real world with a 7-DoF xArm manipulator. Our experimental
setup consists of the xArm robot mounted at one end of a table, and
a top-view RealSense camera that can observe the table, as shown in
Figure 7. To detect the object location, we first get an approximate
mask in the top-view image using thresholding in the HSV space,
and then refine the mask using the OpenCV implementation of
GrabCut [12]. The reported object location is the centroid of this
refined mask. A script was created to record the initial and final
positions of the object, along with the striking speed and contact
angle of the striking end-effector by communicating with the robot
software library. This script enabled data collection from our robot
and camera, which is used in system identification and to train

AIR 25, Jodhpur, India,

RealSense Camara
for Tep View

argel [
Position

%Am‘l 7 DOF |
Manipulator
r'_\‘_ e

(a) Side view (b) Top view

Figure 7: Experimental setup

the residual learning model. The comparison metric for our experi-
ments is the L2 error between the target stopping (x, y) location
on the table and the achieved stopping (x, y) location. We report
averages and standard deviations calculated over multiple trials.

4.1 Low-level Robot Control

The action output by our algorithm is in terms of end-effector
striking velocity in 6-DoF i.e. twist. However, the xArm robot only
allows (task-space or joint space) position control. Therefore we
first reduced the end-effector 6-DoF velocity output by our algo-
rithm to 2-DoF velocity in the plane of the table. To execute this
trajectory on the robot, we initially used the Movelt Advanced
Manipulation Package [7]. However, when we measured the actual
position and velocity reported by the robot end-effector, we found
that the achieved speed was accurate only up to 500 mm/s, and
lacked repeatability at higher speeds.

Therefore, we developed a custom low-level controller that gen-
erates a 2D end-effector position trajectory such that its execution
results in the end-effector moving at the desired striking velocity at
the initial object location. This controller generates a straight-line
trajectory centered at the initial object location and oriented by
the desired striking angle. The positions of this trajectory follow
a trapezoidal velocity profile. We executed it on the robot using
using the xArm Python SDK and achieved high accuracy in speeds,
and obtained good repeatability across our intended speed range
of 400 mm/s - 1000 mm/s.

4.2 Experiments

4.2.1 System Identification. We first assessed the impact of system
identification as described in Section 3.3. We conducted 5 strikes on
the real robot using the striking velocity calculated by the inverse
dynamics solver with and without system identification 1. In the
table F is Final Position(cm) and ID is System identification. We
found that without system identification, the average error was
23.66 cm, and performing system identification reduced it to 8.74
cm.

4.2.2 Comparing residual learning to system identification. In Fig-
ure 8 we compare the real robot striking accuracy results achieved

Chakraborty et al.

Table 1: Striking accuracy with and without system identifi-
cation.

Strikes| Real F |Sim F w/o |[Err w/o ID|Sim F with|Err with ID
ID ID
1 |[30,10] |[53,27] 270 |[36, 15] 9.2
2 |[25,15] |[47, 18] 228 |[32,18] 75
3 |[40,20] |[65, 30] 269 |[44, 24] 10.1
4 |[35,12] |[55, 28] 251 [[39,16] 8.3
5 |[20,8] |[32, 23] 165 |[27,13] 8.6
Avg. - 23.66 |- 8.74

by our proposed residual learning algorithm compared with the
system identification approach. We select two pre-defined object
initial locations for fair comparison, and report mean and stan-
dard deviation in stopping location error for four different target
locations. We observe that the residual learning model reduces the
mean error in stopping position from an average of 9.12 cm to 1.68
cm, or an 81.6% reduction.

e

* Inmal posttion
w{ * Gom position
——— Model Accuracy: System Identificatian
+ Model Accuracy: Aesidual Learming
R - W@ o =0
* (em)

* Inmal posttion
w{ * Gom position
——— Model Accuracy: System Identificatian
+ Model Accuracy: Aesidual Learming

Figure 8: Comparison of real-world object striking accuracy
for different models and different initial and target locations.
The ellipse centroid indicates the mean stopping position
calculated across 5 repetitions, while the length of its axes
indicates the standard deviation.

Figure 9 shows snapshots from the robot execution of the strikes
in real-world with our residual learning model. It compares the
residual model with the system identification. The red dot shows
the target position and the green dot represents the current position
of the object. Improved error compensation can be observed in the
residual learning.

4.2.3 Generalization to a different object. To verify generalization
ability of our approach, we performed the same set of experiments,
including data collection, model training, and hardware validation,

Targeted Object Striking for a 7-DoF Manipulator: A Residual Learning Approach

AIR 25, Jodhpur, India,

L e L L L L L
Lot ®
g.la55 e s> IR e B e
. ' " '1‘ " IF ’-' 'ﬁ
20 22 tm24 =28 =28 t=3.0 =32 =V 38 =38 =40
- - - -
) . L] L} L L
= L] z a T |
v 30 » M >
al a e A 4 ¢ ¢ (.

Figure 9: Top view: Hardware experiment snapshots comparing baseline model and residual learning model

for a second object, a cube with different size, mass, and material
properties. We obtained similar results for this object as well: the
system identification approach results in a mean error of 10.02 cm,
while our residual learning approach resulted in a mean error of
4.36 cm.

5 Conclusion

In this paper, we presented a novel framework for non-prehensile
striking manipulation that bridges the gap between simulation and
real-world execution. Our approach combines physics-based opti-
mization with data-driven residual learning to accurately determine
striking parameters, thus expanding the reachable workspace of
the robotic manipulator.

The method begins with a high-fidelity MuJoCo simulation
whose parameters are iteratively refined using NLopt and system
identification techniques. By collecting hardware data on striking
speed, contact angle, and final object position, we quantify the dis-
crepancies between simulation and reality. A deep learning model
is then trained to predict these residuals that compensate for the
effects of unmodeled parameters, thereby enhancing the precision
of the striking motion.

Experimental evaluations on a 7-DOF robotic manipulator demon-
strate that integrating residual learning into the optimization pipeline
significantly improves accuracy and reliability during real-world
strikes. Our hybrid framework ensures that the simulation closely
replicates the physical environment and adapts to the inherent un-
certainties of dynamic interactions. Overall, our results underscore
the potential of combining simulation optimization with residual
learning to enable robust and efficient sim-to-real transfer in strik-
ing manipulation, which may be extended to other complex robotic
tasks.

5.1 Future Work

Future work will focus on extending the residual model to account
for additional dynamic factors and integrating adaptive control
strategies for broader non-prehensile manipulation tasks.

One interesting problem would be dynamically adapting to the
object shape and adjusting the contact angle accordingly, which
would further improve accuracy and make a single trained model
usable for multiple object shapes.

Another problem would be completely eliminating the hard-
ware data collection and developing an adaptive framework that
can perform some environment exploration at execution time and

tune the residuals based on some parameters measured during the
exploration.

References

[1] Adam Allevato, Elaine Schaertl Short, Mitch Pryor, and Andrea Lockerd Thomaz.
2019. TuneNet: One-Shot Residual Tuning for System Identification and Sim-
to-Real Robot Task Transfer. CoRR abs/1907.11200 (2019). arXiv:1907.11200
http://arxiv.org/abs/1907.11200

[2] Francois R Hogan and Alberto Rodriguez. 2020. Reactive planar non-prehensile
manipulation with hybrid model predictive control. The International Jour-
nal of Robotics Research 39, 7 (2020), 755-773. doi:10.1177/0278364920913938
arXiv:https://doi.org/10.1177/0278364920913938

[3] Taylor A. Howell, Simon Le Cleac’h, Sumeet Singh, Pete Florence, Zachary Manch-
ester, and Vikas Sindhwani. 2022. Trajectory Optimization with Optimization-
Based Dynamics. IEEE Robotics and Automation Letters 7, 3 (2022), 6750-6757.
doi:10.1109/LRA.2022.3152696

[4] Steven G. Johnson. 2007. The NLopt nonlinear-optimization package. https:
//github.com/stevengj/nlopt.

[5] Prakrut Kotecha, Priyansh Sinha, and Nagamanikandan Govindan. 2024. A
Hierarchical Manipulation Planning Framework Combining Striking, Pushing,
and Pick & Place Motion Primitives. In 2024 IEEE 20th International Conference
on Automation Science and Engineering (CASE). 956-961. doi:10.1109/CASE59546.
2024.10711645

[6] Kendall Lowrey, Svetoslav Kolev, Jeremy Dao, Aravind Rajeswaran, and Emanuel
Todorov. 2018. Reinforcement learning for non-prehensile manipulation: Transfer
from simulation to physical system. (03 2018). doi:10.48550/arXiv.1803.10371

[7] Pablo Malvido Fresnillo, Saigopal Vasudevan, Wael M. Mohammed, Jose L. Mar-
tinez Lastra, and Jose A. Perez Garcia. 2023. Extending the motion planning
framework—Movelt with advanced manipulation functions for industrial ap-
plications. Robotics and Computer-Integrated Manufacturing 83 (2023), 102559.
d0i:10.1016/j.rcim.2023.102559

[8] Matthew T. Mason. 1986. Mechanics and Planning of Manipulator Pushing
Operations. The International Journal of Robotics Research 5,3 (1986), 53-71. doi:10.
1177/027836498600500303 arXiv:https://doi.org/10.1177/027836498600500303

[9] Matthew T. Mason. 1999. Progress in Nonprehensile Manipulation. The In-
ternational Journal of Robotics Research 18, 11 (1999), 1129-1141. doi:10.1177/
02783649922067762 arXiv:https://doi.org/10.1177/02783649922067762

[10] Jodo Moura, Theodoros Stouraitis, and Sethu Vijayakumar. 2022. Non-prehensile
Planar Manipulation via Trajectory Optimization with Complementarity Con-
straints. In 2022 International Conference on Robotics and Automation (ICRA).
970-976. doi:10.1109/ICRA46639.2022.9811942

[11] Anuj Pasricha, Yi-Shiuan Tung, Bradley Hayes, and Alessandro Roncone.
2022. PokeRRT: A Kinodynamic Planning Approach for Poking Manipulation.
arXiv:2203.04761 [cs.RO] https://arxiv.org/abs/2203.04761

[12] Carsten Rother, Vladimir Kolmogorov, and Andrew Blake. 2004. GrabCut: Inter-

active Foreground Extraction Using Iterated Graph Cuts. In ACM Transactions on

Graphics (TOG), Vol. 23. ACM, 309-314.

Emanuel Todorov, Tom Erez, and Yuval Tassa. 2012. MuJoCo: A physics engine

for model-based control. In 2012 IEEE/RSY International Conference on Intelligent

Robots and Systems. 5026-5033. doi:10.1109/IROS.2012.6386109

UFactory. 2023. xArm-Python-SDK. https://github.com/xArm-Developer/xArm-

Python-SDK. [Online; accessed 24-February-2025].

[15] Andy Zeng, Shuran Song, Johnny Lee, Alberto Rodriguez, and Thomas
Funkhouser. 2020. TossingBot: Learning to Throw Arbitrary Objects With Resid-
ual Physics. IEEE Transactions on Robotics 36, 4 (2020), 1307-1319. doi:10.1109/
TRO.2020.2988642

=
&

[14

Received 24 February 2025; accepted 18 April 2025

https://arxiv.org/abs/1907.11200
http://arxiv.org/abs/1907.11200
https://doi.org/10.1177/0278364920913938
https://arxiv.org/abs/https://doi.org/10.1177/0278364920913938
https://doi.org/10.1109/LRA.2022.3152696
https://github.com/stevengj/nlopt
https://github.com/stevengj/nlopt
https://doi.org/10.1109/CASE59546.2024.10711645
https://doi.org/10.1109/CASE59546.2024.10711645
https://doi.org/10.48550/arXiv.1803.10371
https://doi.org/10.1016/j.rcim.2023.102559
https://doi.org/10.1177/027836498600500303
https://doi.org/10.1177/027836498600500303
https://arxiv.org/abs/https://doi.org/10.1177/027836498600500303
https://doi.org/10.1177/02783649922067762
https://doi.org/10.1177/02783649922067762
https://arxiv.org/abs/https://doi.org/10.1177/02783649922067762
https://doi.org/10.1109/ICRA46639.2022.9811942
https://arxiv.org/abs/2203.04761
https://arxiv.org/abs/2203.04761
https://doi.org/10.1109/IROS.2012.6386109
https://github.com/xArm-Developer/xArm-Python-SDK
https://github.com/xArm-Developer/xArm-Python-SDK
https://doi.org/10.1109/TRO.2020.2988642
https://doi.org/10.1109/TRO.2020.2988642

	Abstract
	1 Introduction
	2 Related Works
	3 Methodology
	3.1 Low Level Control
	3.2 Inverse Dynamics Solver
	3.3 System Identification
	3.4 Residual Learning
	3.5 Hardware Striking using the Residual

	4 Results
	4.1 Low-level Robot Control
	4.2 Experiments

	5 Conclusion
	5.1 Future Work

	References

